GOVERNMENT DEGREE COLLEGE, NANDIKOTKUR

DEPARTMENT OF CHEMISTRY FUNDAMENTALS IN ORGANIC CHEMISTRY SEM III PAPER -2

Unit 1: Structural Theory in Organic Chemistry

Short Questions:

- 1. What are electrophilic reagents? Give examples.
- 2. Define nucleophilic reagents with examples.
- 3. What are free radicals in organic chemistry? Provide examples.
- 4. Explain bond polarization and factors influencing it.
- 5. How does the inductive effect influence the acidity of carboxylic acids?
- 6. What is resonance or mesomeric effect? Explain its application to phenol.
- 7. Define hyperconjugation and its effect on the stability of carbocations.
- 8. How do free radicals and alkenes interact in chemical reactions?

Long Questions:

- 1.Explain the types of reagents in organic chemistry: electrophilic, nucleophilic, and free radicals.
- 2.Discuss the reaction intermediates: carbocations, carbanions, and free radicals.
- 3.Explain the application of inductive effect in the acidity of carboxylic acids and stability of carbocations.
- 4.Discuss resonance (mesomeric effect) and its effect on the acidity of phenol and carboxylic acids.
- 5.Explain hyperconjugation and its application to the stability of carbocations, free radicals, and alkenes.

Unit 2: Saturated Hydrocarbons (Alkanes and Cycloalkanes)

Short Questions:

- 1. What is the Wurtz reaction for the preparation of alkanes?
- 2.Define Corey-House synthesis and its role in alkane preparation.
- 3.Describe the conformational analysis of ethane.
- 4. What is the Baeyer-Struve theory for cycloalkanes?
- 5.Discuss the relative stability of cyclohexane and its conformations.

Long Questions:

- 1.Discuss the general methods of preparation of alkanes and their physical and chemical properties.
- 2.Explain the conformational analysis of alkanes with energy diagrams for ethane, propane, and butane.
- 3.Describe the molecular formulae of cycloalkanes and their relative stability.
- 4.Explain Baeyer-Struve theory and discuss the conformations of cyclohexane with energy diagrams.
- 5.Describe the properties and reactions of cycloalkanes with emphasis on cyclohexane conformations.

Unit 3: Unsaturated Hydrocarbons (Alkenes and Alkynes)

Short Questions:

- 1. What are Saytzeff and Hofmann eliminations?
- 2. Explain the mechanism of electrophilic addition to alkenes (HX addition).
- 3. What is ozonolysis, and how is it applied to alkenes?
- 4. Describe the Diels-Alder reaction.
- 5. How does the addition of HX to alkenes differ in terms of syn and anti additions?

Long Questions:

1.Discuss the general methods of preparation, physical, and chemical properties of alkenes.

- 2.Explain the mechanism of electrophilic addition reactions, including Markovnikov and anti-Markovnikov additions.
- 3.Describe the Saytzeff and Hofmann elimination mechanisms with suitable examples.
- 4.Discuss the various addition reactions of conjugated dienes, including 1,2-and 1,4-addition.
- 5.Explain the reactions of alkynes, focusing on their acidity, electrophilic and nucleophilic additions, and hydration to form carbonyl compounds.

Unit 4: Benzene and its Reactivity

Short Questions:

- 1. What is the structure of benzene?
- 2. How is benzene prepared from acetylene?
- 3.Describe the mechanism of electrophilic aromatic substitution.
- 4.Explain Friedel-Crafts alkylation and acylation with examples.
- 5. What is the mechanism of nitration of benzene?

Long Questions:

- 1. Explain the structure of benzene and its resonance.
- 2.Discuss the preparation of benzene from acetylene and the mechanism of polymerization.
- 3.Describe the mechanism of electrophilic aromatic substitution with specific examples of halogenation and nitration.
- 4.Discuss Friedel-Crafts alkylation and acylation reactions with examples.
- 5.Explain the various reactions of benzene and their mechanisms, including halogenation and nitration.

Unit 5: Orientation of Aromatic Substitution

Short Questions:

1. What is aromaticity? Explain Huckel's rule.

- 2.Describe the concept of ortho, para, and meta directing groups in aromatic substitution.
- 3. What are ring-activating and deactivating groups? Provide examples.
- 4. How do amino, methoxy, and methyl groups affect the orientation of aromatic substitution?
- 5.Explain the effect of nitro, carboxyl, and sulfonic acid groups on aromatic substitution.

Long Questions:

- 1.Discuss the concept of aromaticity and explain Huckel's rule with examples of benzenoid and non-benzenoid compounds.
- 2. Explain the orientation of aromatic substitution with respect to activating and deactivating groups.
- 3.Discuss the influence of amino, methoxy, and methyl groups on the orientation of aromatic substitution.
- 4.Explain the effects of nitro, carboxyl, nitrile, carbonyl, and sulfonic acid groups on aromatic substitution.